Computational Seismology
Green's functions for the homogeneous acoustic wave equation

This notebook is part of the supplementary material to Computational Seismology: A Practical Introduction, Oxford University Press, 2016.

##### Authors:¶
• Kristina Garina
• Ashim Rijal
• Heiner Igel (@heinerigel)

### Excercise:¶

Initialise Green's function in 1D, 2D and 3D cases of the acoustic wave equation and convolve them with an arbitrary source time function (see Chapter 2, Section 2.2, Fig. 2.9)

This exercise covers the following aspects:

• Learn how to define a source time function
• Calculation of analytical Green's function in the 1D, 2D, and 3D cases
• Convolution of Green's function with source time function

In [1]:
# Import Libraries
%matplotlib inline
import numpy as np
import matplotlib.pyplot as plt


Below we introduce the initial parameters: velocity, distance, length of seismogram, frequency, number of samples, time increment and geometry

In [2]:
#Initial parameters
c = 1.           # velocity m/s
r = 2.           # distance from source
tmax = 5.        # length of seismogram (s)
f0 = 1          # Frequency (Hz)
nt = 3000       # number of time samples
dt = tmax/nt    # time increment
ts=0            # source time

# Geometry
xs=0            # coordinates of source
ys=0
zs=0

yr=0
zr=0


## Source time function¶

Below we initialise time and calculate source time function

In [3]:
# Defining time

for i in range (nt+1):
t=(np.arange(0,i)*dt)
time=np.zeros(nt)
time[0:nt]=t

In [4]:
# Defining source time function

p=1./f0          # period
t0 = p/dt        # defining t0
sigma=4./p

# Initialization of source-time function
src=np.zeros(nt)
source=np.zeros(nt)

# Initialization of first derivative of gaussian
for it in range(nt):
t=(it-t0)*dt
src[it]=-2*sigma*t*np.exp(-(sigma*t)**2)
source[0:nt]=src

# Plotting of source time function
plt.plot(time, src)
plt.title('Source time function')
plt.xlabel('Time, s')
plt.ylabel('Amplitude')
plt.grid()
plt.show()


## 1D Green's function¶

Below we calculate the Green's function for the 1D acoustic problem, its convolution with a source time function. Please note, that we center the source time function around t=0.

In the 1D case, Green's function is proportional to a Heaviside function. As the response to an arbitrary source time function can be obtained by convolution this implies that the propagating waveform is the integral of the source time function.

$G_1=\dfrac{1}{2c}H(t-\dfrac{|r|}{c})$

$r=x$

In [5]:
# Calculating Green's function in 1D

G=np.zeros(nt)      # initialization G with zeros

for i in range (nt):
if (((time[i]-ts)-abs(xr-xs)/c)>=0):
G[i]=1./(2*c)
else:
G[i]=0

# Plotting Green's function in 1D
plt.plot(time, G)
plt.title("Green's function in 1D" )
plt.xlabel("Time, s")
plt.ylabel("Amplitude")
plt.grid()
plt.show()

# Convolution of Green's function with the 1st derivative of a Gaussian
G1=np.convolve(G, source*dt)[:len(G)]

# Plotting convolved Green's function in 1D
plt.plot(time-t0*dt, G1)
plt.title('After convolution')
plt.xlabel('Time, s')
plt.ylabel('Amplitude')
plt.xlim (0, tmax)
plt.grid()
plt.show()


## 2D Green's function¶

Below we calculate the Green's function for 2D acoustic problem, its convolution with the source time function. Please note, that we center the source time function around t=0.

$G_2=\dfrac{1}{2\pi c^2}\dfrac{H(t-\dfrac{|r|}{c})}{\sqrt{t^2-\dfrac{r^2}{c^2}}}$

$r = \sqrt{x^2+y^2}$

In [6]:
# Calculation of Green's function for 2D

G=np.zeros(nt)                    # initialization G with zeros
r=np.sqrt((xs-xr)**2+(ys-yr)**2)

for i in range (nt):
if (((time[i]-ts)-abs(xr-xs)/c)>0):
G[i]=(1./(2*np.pi*c**2))*(1./np.sqrt((time[i]-ts)**2-(r**2/c**2)))
else:
G[i]=0

# Plotting Green's function in 2D
plt.plot(time, G)
plt.title("Green's function in 2D" )
plt.xlabel("Time, s")
plt.ylabel("Amplitude")
plt.xlim((0, tmax))
plt.grid()
plt.show()

# Convolution of Green's function with the 1st derivative of a Gaussian
G2=np.convolve(G, source*dt)[:len(G)]

# Plotting convolved Green's function in 1D
plt.plot(time-t0*dt,G2)
plt.title('After convolution')
plt.xlabel('Time, s')
plt.ylabel('Amplitude')
plt.xlim((0, tmax))
plt.grid()
plt.show()


## 3D Green's function¶

Below we calculate the Green's function for 3D acoustic problem, its convolution with the source time function. Please note, that we center the source time function around t=0.

$G_3=\dfrac{1}{4 \pi c^2 r}\delta(t-r/c)$

$r = \sqrt{x^2+y^2+z^2}$

In [7]:
# Calculation of Green's function for 3D case

G=np.zeros(nt)                               # initialization G with zeros

# Defining time
for i in range (nt+1):
t=(np.arange(0,i)*dt)
new_time=np.zeros(nt)
new_time[0:nt]=t
new_time=t[2]-t[1]

r=np.sqrt((xs-xr)**2+(ys-yr)**2+(zs-zr)**2)     # defining the distance to receiver
amp=1./(4*np.pi*(c**2)*r)                       # defining amplitudes
t_arr=ts+(r/c)                               # time arrival
i_arr=t_arr//new_time
b=int(i_arr)
G[b]= amp/dt

# Plotting Green's function in 3D
plt.plot(time, G)
plt.title("Green's function in 3D" )
plt.xlabel("Time, s")
plt.ylabel("Amplitude")
plt.xlim((0, tmax))
plt.grid()
plt.show()

# Convolution of Green's function with the 1st derivative of a Gaussian
G3=np.convolve(G, source)[:len(G)]

# Plotting convolved Green's function in 1D
plt.plot(time-t0*dt, G3)
plt.title('After convolution')
plt.xlabel('Time, s')
plt.ylabel('Amplitude')
plt.xlim (0, tmax)
plt.grid()
plt.show()